miércoles, 20 de junio de 2007

automatizacion industrial

Marco Teórico
Actividades

El área de automatización desarrolla actividades educativas de investigación y desarrollo y de extensión, en el área de sistemas dinámicos y sus aplicaciones al control automático, teoría de señales, identificación, modelamiento e Instrumentación.
Dentro de las actividades educativas, el área de Automatización desarrolla cursos de pregrado involucrados dentro de los programas académicos de la Facultad de Ingeniería, y un curso de postgrado Itinerante.
En el área de Investigación y desarrollo, del Programe ofrece asesoría y soporte en el desarrollo e implementación de nuevas técnicas en el área de instrumentación, identificación, tratamiento de señales, ajuste y diseño de controladores.
La apertura ha mostrado que, a pesar de existir en el país, un elevado número de industrias en todos los campos de la producción, la gran mayoría no está en capacidad de competir en los Mercados Internacionales, tanto en cantidad como en calidad. La explicación salta a la vista cuando se observa y analiza el parque de máquina y equipo empleados. Este está formado por una amplia gama de tecnologías, la mayoría de ellas con una alta participación manual en sus procesos. Como resultado, su rendimiento es mínimo y no hay homogeneidad en los bienes producidos. El pretender reponer el parque industrial por aquel do alta tecnología do punta, os una tarea que raya en lo imposible para la casi totalidad de las empresas debido a los altos costos que ello representa. Se puede contar con los dedos de las manos las actuales empresas nacionales que podrían hacerlo. Sin embargo, lo anterior no debe ser una razón para permanecer en el actual estado do atraso. Existen soluciones viables para que cada uno de los grupos o niveles tecnológicos y aprovechando sus propias máquinas y equipos, Implanten una automatización acorde a sus condiciones. Para formar el recurso humano capaz de diseñar y dirigir esta labor, se ha estructurado el programa académico a nivel de Pregrado de Ingeniería en Automatización Industrial.
Grado de automatización,Según la importancia de la automatización, se distinguen los siguientes grados:Aplicaciones en pequeña escala como mejorar el funcionamiento de una maquina en orden a:Mayor utilización de una máquina, mejorando del sistema de alimentación.Posibilidad de que un hombre trabaje con más de una máquina.Coordinar o controlar una serie de operaciones y una serie de magnitudes simultáneamente.Realizar procesos totalmente continuos por medio de secuencias programadas.Procesos automáticos en cadena errada con posibilidad de autocontrol y autocorrecclón de desviaciones.Perfil Ocupacional
Diseñar, desarrollarar implementar procesos de Automatización en Industrias y Agroindustrias, tanto elementales como complejas.
Analizar, adaptar y crear tecnología en el campo de la Automatización Industrial y Agroindustrial.
Prestar asesoría a le Industria en estudios de factibilidad tendientes a su modernización.
Prestar asesoría al Estado en la definición de los planes de fomento y modernización de la Industria y la Agroindustrial.
Fuentes De Trabajo
Debido a que la formación recibida durante su etapa de estudios no está limitada a una determinada línea de maquinas y equipos, sino que se consientiza en que la función de Automatización tienen una cuente los principios de funcionamiento, el egresado encuentra como fuente de trabajo a todo tipo de empresas dedicada a la producción de bienes o de transformación de materias primas, empleando procesos industriales o agroindustriales, como son textiles, metalmecánica, productos derivados del cuero, productos químicos, alimentos, debidas, etc.
Objetivos Generales
Formar recursos humanos que contribuyan al proceso de modernización de la Industria y la Agroindustrial Colombiana, con cubrimiento de las más elementales hasta las más complejas, tanto en máquinas y equipos como en capital disponible.
Formar recursos humanos con visión integral en cuento a los requerimientos del medio y su ubicación en el contexto mundial.
Formar un profesional capaz de aprovechar los desarrollos tecnológicos existentes en el campo de la automatización, con el propósito de adecuarlos al medio y de generar innovaciones que mejoren los existentes.
Formar un profesional con permanentes inquietudes investigativa, tendientes a desarrollar ciencia y tecnología, de acuerdo a las oportunidades que le brinda el medio.
Formar un profesional con conocimiento e Identificación del país y de su estructura social y su gobierno.
Area De EstudioBase Ingenieril y Fundamentación Teórica Tecnología Específica (Columna Vertebral)B1. NEUMÁTICAB2. OLEOHIDRAULICAB3. INSTRUMENTACIÓN Y CONTROLB4. SISTEMAS Y COMPUTACIÓNElectricidad y Electrónica
Industrial
Soporte Teórico para la investigación
Complementación
Proyecto de Grado
Para la automatización de procesos, se desarrollaron máquinas operadas con Controles Programables (PLC), actualmente de gran ampliación en industrias como la textil y la alimentación.
Para la información de las etapas de diseño y control de la producción se desarrollaron programes de computación para eI dibujo (CAD), para el diseño (CADICAE), para la manufactura CAM, para el manejo de proyectos, para la planeación de requerimientos, para la programación de la producción, para el control de calidad, etc.
La inserción de tecnologías de la información producción industrial de los países desarrollados ha conocido un ritmo de crecimiento cada vez más elevado en los últimos años. Por ejemplo, le Información amplia enormemente la capacidad de controlar la producción con máquinas de control computarizado y permite avanzar hacia mayores y más complejos sistemas de automatización, unas de cuyas expresiones más sofisticadas y más ahorradoras de trabajo humano directo son los robots, los sistemas flexibles do producción y los sistemas de automatización integrada de la producción (computer integrad manufacturing CIM).
Aunque es evidente que la automatización sustituye a un alto porcentaje de la fuerza laboral no calificada, reduciendo la participación de los salarios en total de costos de producción, las principales razones para automatizar no incluye necesa5lemente la reducción dei costo del trabajo. Por otra parte, la automatización electromecánica tradicional ya ha reducido significativamente la participación de este costo en los costos de producción. Actualmente en Estados Unidos la participación típica el trabajó directo en el costo de le producción Industriales de 10 % o 15 % y en algunos productos de 5 %. por otra parte, existen otros costos, cuya reducción es lo que provee verdadera competitividad a la empresa. Entre estos costos está trabajo indirecto, administración control de calidad compras de insumos, flujos de información, demoras de proveedores, tiempos muertos por falta de flexibilidad y adaptabilidad etc. Estos son los costos que pueden ser reducidos por las nuevas tecnologías de automatización al permitir mayor continuidad, Intensidad y control Integrado del proceso de producción, mejor calidad del producto y reducción significativa de errores y rechazos, y a la mayor flexibilidad y adaptabilidad de la producción a medida y en pequeños lotes o pequeñas escalas de producción.
La mayor calidad en los productos so logra mediante exactitud de las máquinas automatizadas y por la eliminación de los errores propios del ser humano; lo que a su vez repercuten grandes ahorros de tiempo y materia al eliminarse la producción de piezas defectuosas.
La flexibilidad de las máquinas permite su fácil adaptación tanto a una producción individualizadas y diferenciada en le misma linee de producción, como mi cambio total de la producción. Esto posibilite una adecuación flexible a las diversas demandas del mercado.
Por estas razones, la inversión en tecnología de automatización no puede ser considerada como cualquier otra Inversión, sino como una necesaria estrategia de competitividad, no Invertir en esta tecnología. Implica un riesgo alto de rápido desplazamiento por la competencia. Reconociendo esta nueva realidad del mercado, las inversiones en estas tecnologías se multiplican en Estados Unidos en la presente década, como se observa.
Inversiones En Tecnologías De Automatización, 1980-1990 En EEUU
(en millones de dólares)
TECNOLOGIAS

1980
1985
1990
1. Manufactura asistida por computador CAM.





a. Computadores Software industriales
935
2861
6500

b. Sistemas de manejo de materiales
2000
4500
9000

c. Controladores Programadores
50
550
3000

d. Robots sensores
68
664
2800

o. Equipo automático de pruebas
800
2000
4000
TOTAL CAM

6853
15375
32300
2. Diseño e ingeniería asistidos por Computador CAD, CAE

389
2456
6500
3. Telecomunicaciones

113
264
800
TOTAL

7355
18095
39600
La introducción de las computadoras y de la microelectrónica extiende el campo de la automatización industrial ya que permite a través del manejo de la información (alimentación, procesamiento, salida) transformar ¡os instrumentos de producción y aún la totalidad de los procesos productivos de algunas industrias.
Se continúa y extiende así el proceso de automatización electromecánica que se Inicia a principios del siglo. La nueva era de la automatización se basa en la fusión de la electrónica con los antiguos mecanismos automáticos que funcionaban utilizando diferentes medios mecánicos neumáticos, etc. dando origen a los robot., a las máquinas herramientas computarizadas, a los sistemas flexibles de producción, etc.
La automatización en los procesos Industriales, se basa en ¡a capacidad para controlar la información necesaria en el proceso productivo, mediante la ex ancle de mecanismos de medición y evaluación de las normas de producción. A través de diversos instrumentos controlados por la información suministrada por el computadora, se regula el funcionamiento de las máquinas u otros elementos que operan el proceso productivo.
En concreto, este sistema funciona básicamente de la siguiente manera: mediante la utilización de captadores o sensores (que son esencialmente instrumentos de medición, como termómetros o barómetros), se recibe la información sobra el funcionamiento de las variables que deben ser controladas (temperatura, presión, velocidad, espesor o cualquier otra que pueda cuantificarse), esta información se convierte en una señal, que es comparada por medio de la computadora con la norma, consigna, o valor deseado para determinada variable. Si esta señal no concuerda con la norma de Inmediato se genere una señal de control (que es esencialmente una nueva Instrucción), por la que so acciona un actuador o ejecutante (que generalmente son válvulas y motores), el que convierte la señal de control en una acción sobre el proceso de producción capaz de alterar la señal original imprimiéndole el valor o la dirección deseada.
En la práctica, la automatización de la industria alcanza diferentes niveles y grados ya que la posibilidad concrete de su implementación en los procesos de fabricación industrial varia considerablemente según se trate de procesos de producción continua o en serie. En efecto, en el primer caso, el primer caso, el conducto es el resultado de una serie de operaciones secuenciales, predeterminadas en su orden, poco numerosas, y que requieren su Integración en un flujo continuo de producción. Los principales aportes de la microelectrónica a este tipo de automatización son los mecanismos de control de las diversas fases o etapas productivas y la creciente capacidad de control integrado de todo el proceso productivo. Por su parte, la producción en serle está formada por diversas operaciones productivas, generalmente paralelas entre si o realizadas en diferentes períodos de tiempos o sitios de trabajo, lo que ha dificultado la integración de líneas de producción automatización. Desde mediados de los años setenta las posibilidades de automatización integrada han aumentado rápidamente gracias a lo adelantos en la robótica, en las máquinas herramienta de control numérico, en los sistemas flexibles de producción, y en el diseño y manufactura asistidos por computadora (CAD/CAM).
Los RobotsLas nuevas tecnologías de automatización Industrial:Sistemas CAD-CAMMáquinas herramientas automatizadas.
Sistemas de fabricación flexible, son de flexibilidad limitada, la que sólo puede aumentarse a través de nuevos mecanismos de interfaces, articulación o interacción, como los provistos por los diferentes tipos de robots: manipuladores manuales, robot. de secuencia fija o variables, robots reprogramables, etc.
El principal papel de los robot. es articular diferentes máquinas y funciones productivas; transporte, manejo de materiales, maquinado, carga y descarga, etc. mediante su capacidad para desempeñar diversas tareas u operaciones. El robot industrial ha sido descrito como el elemento más visible de la fabricación asistida por computador y como la base técnica para la mayor automatización de la producción.
El desarrollo de los robots está estrechamente relacionado con el de las otras tecnologías do automatización comprendidas por el concepto de CAM. Sin embargo,. Los robots tienen menos importancia en la automatización de procesos de producción continua que en los de producción discontinuo o discreta y de lotes variados y de poco volumen.
El desarrollo de los robots se deriva de los continuos avances en máquinas herramientas y en manipuladores manuales, y se Inscribe dentro del proceso mayo de introducción de la microelectrónica a la producción de bienes de capital.
3. Definición De Robot
Una de las definiciones más completas y más comúnmente utilizados e la propuesta por la organización Internacional para la Estandarización (ISO):
"EI robot industrial es un manipulador multifuncional, reprogramable, de posiciones o movimientos automáticamente controlados, con varios ejes, capaz de manejar materiales, partes, herramientas o instrumentos especializados a través de movimientos variables programados para la ejecución de varias tareas. Con frecuencia tienen la apariencia de uno o varios brazos que terminan en una muñeca; su unidad de control utiliza un sistema de memoria y algunas veces puede valerse de instrumentos sensores y adaptadores que responden a estímulos del medio ambiente y sus circunstancias, así como las adaptaciones realizadas. Estas máquinas multifuncionales son generalmente diseñadas para realizar funciones repetitivas y pueden se adaptados a otras funciones sin alteraciones permanentes en el equipo".
Un robot está conformado por dos grandes subsistemas.
La estructura mecánica, hidráulica y eléctrica, que comprenden las funciones de movimiento y manipulación.
La estructura electrónica e informática o subsistema de comando, que provee la memoria programable del robot y permite su sincronización con otras máquinas. Este subsistema es la "inteligencia" del robot, de la que depende su flexibilidad y versatilidad, o capacidad para ejecutar diversas tareas y sincronizarse con otras máquinas.
La capacidad de movimiento y manipulación de un robot, o esfera de influencia, depende en gran parte de la geometría de su brazo, muñeca y mano (o actuador). Los grados de libertad de cada uno (o número de movimientos diferentes posibles) determinan la destreza y capacidad del robot, así mismo su costo y su complejidad. El ejecutor o actuador o herramienta final varia en función de las tareas requeridas, puede ser por ejemplo, una pinza o pistola de soldadura de pintura, etc.
Los primeros robots empezaron producirse a comienzos de la década del 60 y estaban diseñados principalmente para trabajos difíciles y peligrosos. Los trabajos tediosos, laborioso y repetitivos en la industria manufacturera como la carga y descarga de hornos de fundición, fueron les áreas donde los robots fueron aplicados hasta finalizar el decenio de 1960.
Con los rápidos y continuos avances en microelectrónica e informática a partir de 1970, fueron desarrollados los robots programabas para manipulaciones complejas. Se comenzaron a utilizar como auxiliares de la producción en serie muy grandes, tanto en las líneas de ensamble en la industria mecánica como en la industria automotriz. En esta última aparecieron los robots de pintura y los de soldadura.
En la actual generación de robot., la estructura mecánica representa la mayor parte del costo total del robot, pero disminuirá rápidamente en las futuras generaciones de robot a favor de la estructura lógica, de control.
El objetivo de la próxima generación es imitar los sentidos humanos o desarrollar la capacidad de percepción sensorial; visión, tacto, voz, con le ayuda de los nuevos avances en inteligencia artificial. Estos nuevos robots tendrán una mayor capacidad de aprendIzaje y de interacción dinámica con el medio ambiente.
4. Aplicaciones
La introducción de los robots ha sido facilitada por la técnica de organización y división del trabajo, sobre todo en la producción en masa, basadas en la mayor especialización, simplificación y repetividad de las tareas productivas, lo que ha facilitado el diseño y programación de los robots.
Entre las principales aplicaciones no industriales de los robot. es necesario mencionar su utilización en plantas de energía nuclear, en le exploración submarina, la minería, construcciones, agricultura, medicina etc.
Las principales aplicaciones industriales son las siguientes:
Fundición en molde (die-casting). Esta fue la primera aplicación industrial.
Soldadura de Punto. Actualmente es la principal área la presente generación de robot. Ampliamente utilizada en la industria automotriz. En promedio, este tipo de robot. reduce a la mitad la fuerza laboral necesaria.
Soldaduras de Arco. No requiere de modificaciones sustanciales en el equipo de soldadura y aumenta la flexibilidad y la velocidad.
Moldeado por Extrusión. De gran Importancia por creciente demanda de partes especializadas de gran complejidad y precisión.
Forjado (Forglng). La principal aplicación es la manipulación de partes metálicas calientes.
Aplicaciones de Prensado (press work). Partes y, panales de vehículos y estructuras de aviones, electrodomésticos y otros productos metalmecánicos. Esta es un área de rápido desarrollo de nuevos tipos de robot.
Pinturas y Tratamiento de Superficies. El mejoramiento de las condiciones de trabajo y la flexibilidad han sido las principales razones para el desarrollo de estas aplicaciones.
Moldeado Plástico. Descarga de máquinas de inyección de moldes, carga de moldes, paletización y empaque de moldes, etc. Alta contribución al mejoramiento de las condiciones de trabajo, al ahorro de mano obra, a la reducción del tiempo de producción, y al aumento de la productividad.
Aplicaciones en la Fundición. Carga y descarga de máquinas, manejo de materiales calientes, manejo de moldes, etc. Las difíciles condiciones de trabajo hacen necesarios los robot., aunque ha sido muy difícil su diseño y eficacia.
Carga y Descarga de Máquina Herramientas. Los robots aumentan la flexibilidad y versatilidad de las máquinas herramientas y permiten su articulación entre si. Contribuyen ala reducción de stocks, minimizan costos del trabajo directo e indirecto, aumentan la calidad de la producción y maximizar la utilización del equipo.
En aparatos y maquinaria eléctrica y electrónica, juguetes, ingeniería mecánica, industrial automotriz, etc.
Estas diversas aplicaciones industriales implican la clasificación de los robots en cuatro tipos de operaciones efectuadas:
Robots de manejo de materiales: carga y descarga de máquinas herramienta, moldeado de plástico.
Robot. de tratamiento de superficie: pintura, Ia pieza,
Robots de en ensamblaje y transferencia.
Robot. de soldadura, y
Robots de procesamiento por calor; moldeado, prensado, etc.
5. Bibliografía
Websites:
www.peocitíes.com/automatizacion industrial
www.mamma.com (automatización)

No hay comentarios: